Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Early Intervention in Psychiatry ; 17(Supplement 1):134, 2023.
Article in English | EMBASE | ID: covidwho-20235852

ABSTRACT

The COVID-19 crisis has had a significant impact on the mental health of adolescents and young adults in South America. As a result, the appearance of a higher incidence of anxiety and depressive disorders in these countries have been documented and could lead to the appearance of severe mental health disorders. In this context, the prevention and early intervention in mental health is a current challenge in Central and South America. Since the last decade, the existence of initiatives in this field has been mapped in Mexico, Brazil, Chile and Argentina, mostly in first episode psychosis programs. However, Chile is the only country in South America with a multicentre prospective initiative for early detection and intervention in clinical high-risk subjects (called RED-EMAR). The aim of RED-EMAR is disseminate the value of the at-risk mental state concept (abbreviated to EMAR in Spanish), establish agreed therapeutic strategies in this field, and establish potential new evidence-based local interventions. The successful experiences of this network include the monitoring and discussion of clinical cases in telemedicine and the development of mental health psychoeducation guidelines. However, Insufficient resources, stigma, and the lack of mental health public policies are some of the weaknesses of this initiatives in South America. The development and access to early detection and intervention services in South America could be a window of opportunity to reduce the impact of severe mental health disorders such as psychosis and related disorders and move towards an approach aimed at prevention or delaying its onset.

2.
Process Safety and Environmental Protection ; 2023.
Article in English | ScienceDirect | ID: covidwho-2320746

ABSTRACT

The demand for zinc oxide surged during the Covid-19 pandemic as gloves became a necessity in daily life. The washing-off of the zinc oxide used to activate crosslinking in glove latex, generates hazardous zinc-containing wastewater, which is conventionally treated by chemical precipitation using lime and caustic soda. This produces large volumes of hazardous sludge. This study aims to demonstrate removal and recovery of zinc from real wastewater via adsorption-desorption-chemical precipitation approach to produce utilizable secondary zinc oxide. A low-cost palm shell activated carbon was used to adsorb zinc from raw wastewater with 93% efficiency, straightforwardly reducing zinc concentration below 2mg/L (discharge standard) within 45min, at pH 7 and 60 °C. Subsequent desorption with 0.3M HCl facilitated recovery of 63% of secondary zinc oxide from the desorption solutions via chemical precipitation and calcination path. Morphological analysis of the synthesized secondary zinc oxide confirmed high crystallinity of hexagonal wurtzite crystalline structure of typical spherical and nanorods particle shapes measuring 102nm in size. Surface area comprised of considerable 59.02 m2/g, with pores volume and size of 0.1735 m3/g and 11.76nm, respectively. This study demonstrated successful recovery of zinc ions from raw industrial wastewater to produce good quality secondary zinc oxide, creating opportunities for zinc recycling, reduction in consumption of chemicals and chemical sludge volume, steering way towards sustainable practices in rubber gloves manufacturing sector.

3.
New Journal of Chemistry ; 47(1):17-40, 2022.
Article in English | EMBASE | ID: covidwho-2316894

ABSTRACT

Viruses and other microorganisms can enter water sources from different routes and cause pollution and irreparable damage. So, cost-effective and efficient systems for providing safe water are necessary. Efficient filtration systems based on antimicrobial materials have received a lot of attention in this regard. A wide range of materials play an important role in the production of efficient water filtration systems. Metal and metal oxide particles with anti-viral and antimicrobial properties comprising Cu, Cu2O, Ag, TiO2, and ZnO play a valuable role in the preparation of water filtration systems. Biopolymers such as cellulose or carbon nanomaterials like graphene or its derivatives have been reported to provide safe water. In this review, we summarize the use of diverse materials in the preparation of efficient filtration-based systems like membranes and paper filters for water treatment. Pathogen-containing water samples were effectively disinfected using the prepared water disinfection systems.Copyright © 2023 The Royal Society of Chemistry.

4.
2022 International Conference on Emerging Trends in Engineering and Medical Sciences, ICETEMS 2022 ; : 395-400, 2022.
Article in English | Scopus | ID: covidwho-2314088

ABSTRACT

The present pandemic has highlighted the necessity of infection protection gear as a crucial protective approach, particularly given the fact that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects individuals in poorly ventilated environments. Embedding antimicrobial function onto protection gear would have major implications in minimizing pathogen contamination and lowering healthcare associated illness. In this study, non woven polypropylene fabric (NWPP) which is widely used in personal hygiene products and hospital protective gears has been subjected to surface fictionalization with corona treatment. Surface polarity of the treated fabric was studied by use of dyne liquid which showed generation of surface polarization. Subsequently, the resultant surface polarized NWPP were spray coated with zinc oxide (ZnO) antiviral agent. The antiviral agents were rendered to adhere to NWPP by use of polyurethane solution coating on the fabric. The effect of antiviral coatings on NWPP fabric with the use of polyurethane solution as an adhesive were investigated in terms of antiviral activity and anti-bacterial activity against MS2 bacteriophage and Staphylococcus aureus and Klebsiella pneumonia bacteria respectively. Coating of surface polarized NWPP with polyurethene binder reduced the leaching of antiviral coating. More importantly, the fabrics exhibited promising antiviral and anti bacterial activity with 99.90 % reduction in microorganisms after 24 hours of exposure. © 2022 IEEE.

5.
Int J Mol Sci ; 24(9)2023 May 08.
Article in English | MEDLINE | ID: covidwho-2320472

ABSTRACT

The highly contagious SARS-CoV-2 virus is primarily transmitted through respiratory droplets, aerosols, and contaminated surfaces. In addition to antiviral drugs, the decontamination of surfaces and personal protective equipment (PPE) is crucial to mitigate the spread of infection. Conventional approaches, including ultraviolet radiation, vaporized hydrogen peroxide, heat and liquid chemicals, can damage materials or lack comprehensive, effective disinfection. Consequently, alternative material-compatible and sustainable methods, such as nanomaterial coatings, are needed. Therefore, the antiviral activity of two novel zinc-oxide nanoparticles (ZnO-NP) against SARS-CoV-2 was investigated in vitro. Each nanoparticle was produced by applying highly efficient "green" synthesis techniques, which are free of fossil derivatives and use nitrate, chlorate and sulfonate salts as starting materials and whey as chelating agents. The two "green" nanomaterials differ in size distribution, with ZnO-NP-45 consisting of particles ranging from 30 nm to 60 nm and ZnO-NP-76 from 60 nm to 92 nm. Human lung epithelial cells (Calu-3) were infected with SARS-CoV-2, pre-treated in suspensions with increasing ZnO-NP concentrations up to 20 mg/mL. Both "green" materials were compared to commercially available ZnO-NP as a reference. While all three materials were active against both virus variants at concentrations of 10-20 mg/mL, ZnO-NP-45 was found to be more active than ZnO-NP-76 and the reference material, resulting in the inactivation of the Delta and Omicron SARS-CoV-2 variants by a factor of more than 106. This effect could be due to its greater total reactive surface, as evidenced by transmission electron microscopy and dynamic light scattering. Higher variations in virus inactivation were found for the latter two nanomaterials, ZnO-NP-76 and ZnO-NP-ref, which putatively may be due to secondary infections upon incomplete inactivation inside infected cells caused by insufficient NP loading of the virions. Taken together, inactivation with 20 mg/mL ZnO-NP-45 seems to have the greatest effect on both SARS-CoV-2 variants tested. Prospective ZnO-NP applications include an antiviral coating of filters or PPE to enhance user protection.


Subject(s)
COVID-19 , Nanoparticles , Zinc Oxide , Humans , Zinc Oxide/pharmacology , SARS-CoV-2 , Ultraviolet Rays , Antiviral Agents/pharmacology , Prospective Studies
6.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2267572

ABSTRACT

This study investigated the methods of preparation of zinc oxide-polypropylene nanocomposites and their antibacterial properties. Seven solutions with ZnO nanoparticles or zinc ions were formulated as a PP additive. Two methods of ZnO NPs syntheses were carried out: (1) a modified hydrothermal method where a water solution of zinc acetate dihydrate, PEI, and ammonia were mixed with a final pH 11; (2) a thermal decomposition of a water solution of zinc acetate in the presence of PEI and ammonia using a two-screw extruder. During the experiments, the influence of various amounts of particle stabilizer, heating of the solutions, and the temperatures of the syntheses were examined. As a result, the simultaneous crystallization of ZnO in the extrusion process confirmed this method's attractiveness from the application point of view. Fabricated PP-ZnO composite shows antibacterial properties against Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae.


Subject(s)
Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Polypropylenes , Ammonia , Microbial Sensitivity Tests , Zinc , Zinc Acetate , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli , Water
7.
Nanotechnology ; 34(25)2023 Apr 11.
Article in English | MEDLINE | ID: covidwho-2277211

ABSTRACT

Addressing respiratory infectious diseases remains one of the main priorities due to the increased risk of exposure caused by population growth, increasing international travel and commerce, and most recently, the COVID-19 outbreak. In the war against respiratory diseases, facemasks are powerful tools to obstruct the penetration of microorganisms, thereby protecting the wearer from infections. Nonetheless, the intercepted microorganisms on the surface of facemasks may proliferate and lead to secondary infection. To solve this problem, atomic layer deposition is introduced to deposit uniform and mechanically robust ZnO layers on polypropylene (PP) nonwoven fabrics, a widely used raw material in fabricating facemasks. The loading of ZnO demonstrates no adverse effects on the separation performance of facemasks, and the filtration efficiency of the facemasks towards different types of nanoparticles remains higher than 98.9%. Moreover, the modified PP nonwoven fabrics are granted with excellent antibacterial activity and photocatalytic sterilization ability, which can inactivate both germ-negative and germ-positive bacteria (E. coliandS. aureus) effectively with and without light illumination. Therefore, the modified PP nonwoven fabrics are potential candidates to be used as the outer layer on facemasks and endow them with photocatalytic antibacterial activity.


Subject(s)
COVID-19 , Zinc Oxide , Humans , Polypropylenes , Masks , Anti-Bacterial Agents
8.
Biosensors (Basel) ; 13(3)2023 Mar 11.
Article in English | MEDLINE | ID: covidwho-2274512

ABSTRACT

The evaluation of serological responses to COVID-19 is crucial for population-level surveillance, developing new vaccines, and evaluating the efficacy of different immunization programs. Research and development of point-of-care test technologies remain essential to improving immunity assessment, especially for SARS-CoV-2 variants that partially evade vaccine-induced immune responses. In this work, an impedimetric biosensor based on the immobilization of the recombinant trimeric wild-type spike protein (S protein) on zinc oxide nanorods (ZnONRs) was employed for serological evaluation. We successfully assessed its applicability using serum samples from spike-based COVID-19 vaccines: ChAdOx1-S (Oxford-AstraZeneca) and BNT162b2 (Pfizer-BioNTech). Overall, the ZnONRs/ spike-modified electrode displayed accurate results for both vaccines, showing excellent potential as a tool for assessing and monitoring seroprevalence in the population. A refined outcome of this technology was achieved when the ZnO immunosensor was functionalized with the S protein from the P.1 linage (Gamma variant). Serological responses against samples from vaccinated individuals were acquired with excellent performance. Following studies based on traditional serological tests, the ZnONRs/spike immunosensor data reveal that ChAdOx1-S vaccinated individuals present significantly less antibody-mediated immunity against the Gamma variant than the BNT162b2 vaccine, highlighting the great potential of this point-of-care technology for evaluating vaccine-induced humoral immunity against different SARS-CoV-2 strains.


Subject(s)
COVID-19 , Vaccines , Zinc Oxide , Humans , BNT162 Vaccine , SARS-CoV-2 , COVID-19 Vaccines , Seroepidemiologic Studies , COVID-19/diagnosis , Antibodies , Antibodies, Viral
9.
Environ Sci Pollut Res Int ; 2022 Jan 27.
Article in English | MEDLINE | ID: covidwho-2250720

ABSTRACT

Cellulosic fiber (CF) in nanoform is emergingly finding its way for COVID-19 solution for instance via nanocomposite/nanoparticle from various abundant biopolymeric waste materials, which may not be widely commercialized when the pandemic strikes recently. The possibility is wide open but needs proper collection of knowledge and research data. Thus, this article firstly reviews CF produced from various lignocellulosic or biomass feedstocks' pretreatment methods in various nanoforms or nanocomposites, also serving together with metal oxide (MeO) antimicrobial agents having certain analytical reporting. CF-MeO hybrid product can be a great option for COVID-19 antimicrobial resistant environment to be proposed considering the long-established CF and MeO laboratory investigations. Secondly, a preliminary pH investigation of 7 to 12 on zinc oxide synthesis discussing on Fouriertransform infrared spectroscopy (FTIR) functional groups and scanning electron microscope (SEM) images are also presented, justifying the knowledge requirement for future stable nanocomposite formulation. In addition to that, recent precursors suitable for zinc oxide nanoparticle synthesis with emergingly prediction to serve as COVID-19 purposes via different products, aligning with CFs or nanocellulose for industrial applications are also reviewed.

10.
Acs Biomaterials Science & Engineering ; 9(1):458-473, 2023.
Article in English | Web of Science | ID: covidwho-2243827

ABSTRACT

Even after over 2 years of the COVID-19 pandemic, research on rapid, inexpensive, and accurate tests remains essential for controlling and avoiding the global spread of SARS-CoV-2 across the planet during a potential reappearance in future global waves or regional outbreaks. Assessment of serological responses for COVID-19 can be beneficial for population-level surveillance purposes, supporting the development of novel vaccines and evaluating the efficacy of different immunization programs. This can be especially relevant for broadly used inactivated whole virus vaccines, such as CoronaVac, which produced lower titers of neutralizing antibodies. and showed lower efficacy for specific groups such as the elderly and immunocompromised. We developed an impedimetric biosensor based on the immobilization of SARS-CoV-2 recombinant trimeric spike protein (S protein) on zinc oxide nanorod (ZnONR)-modified fluorine-doped tin oxide substrates for COVID-19 serology testing. Due to electrostatic interactions, the negatively charged S protein was immobilized via physical adsorption. The electrochemical response of the immunosensor was measured at each modification step and characterized by scanning electron microscopy and electrochemical techniques. We successfully evaluated the applicability of the modified ZnONR electrodes using serum samples from COVID-19 convalescent individuals, CoronaVac-vaccinated with or without positive results for SARS-CoV-2 infection, and pre-pandemic samples from healthy volunteers as controls. ELISA for IgG anti-SARS-CoV-2 spike protein was performed for comparison, and ELISA for IgG anti-RBDs of seasonal coronavirus (HCoVs) was used to test the specificity of immunosensor detection. No cross-reactivity with HCoVs was detected using the ZnONR immunosensor, and more interestingly, the sensor presented higher sensitivity when compared to negative ELISA results. The results demonstrate that the ZnONRs/spike-modified electrode displayed sensitive results for convalescents and vaccinated samples and shows excellent potential as a tool for the population's assessment and monitoring of seroconversion and seroprevalence.

11.
Molecules ; 28(1)2022 Dec 28.
Article in English | MEDLINE | ID: covidwho-2238606

ABSTRACT

SARS-CoV-2 has caused more than 596 million infections and 6 million fatalities globally. Looking for urgent medication for prevention, treatment, and rehabilitation is obligatory. Plant extracts and green synthesized nanoparticles have numerous biological activities, including antiviral activity. HPLC analysis of C. dirnum L. leaf extract showed that catechin, ferulic acid, chlorogenic acid, and syringic acid were the most major compounds, with concentrations of 1425.16, 1004.68, 207.46, and 158.95 µg/g, respectively. Zinc nanoparticles were biosynthesized using zinc acetate and C. dirnum extract. TEM analysis revealed that the particle size of ZnO-NPs varied between 3.406 and 4.857 nm. An XRD study showed the existence of hexagonal crystals of ZnO-NPs with an average size of 12.11 nm. Both ZnO-NPs (IC50 = 7.01 and CC50 = 145.77) and C. dirnum L. extract (IC50 = 61.15 and CC50 = 145.87 µg/mL) showed antiviral activity against HCOV-229E, but their combination (IC50 = 2.41 and CC50 = 179.23) showed higher activity than both. Molecular docking was used to investigate the affinity of some metabolites against the HCOV-229E main protease. Chlorogenic acid, solanidine, and catchin showed high affinity (-7.13, -6.95, and -6.52), compared to the ligand MDP (-5.66 Kcal/mol). Cestrum dinurum extract and ZnO-NPs combination should be subjected to further studies to be used as an antiviral drug.


Subject(s)
COVID-19 , Cestrum , Metal Nanoparticles , Nanoparticles , Zinc Oxide , Humans , Zinc Oxide/chemistry , Metal Nanoparticles/chemistry , Antiviral Agents/pharmacology , Molecular Docking Simulation , Zinc , SARS-CoV-2/metabolism , Nanoparticles/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
12.
Polymers from Renewable Resources ; 14(1):3-15, 2023.
Article in English | ProQuest Central | ID: covidwho-2195499

ABSTRACT

Nanocomposite gels are novel materials mainly used in the medical field for the control drug release and distribution. In this study, the effect of the concentration of galactomannan/zinc oxide nanocomposite in a polymeric Carbopol matrix to obtain a functional nanocomposite gel was studied. The swelling, thermogravimetric, rheological, and antibacterial properties against Escherichia coli and Staphylococcus aureus were evaluated. The results indicate that there is a direct effect between the amount of the employed nanocomposite and the properties studied in the gels. In this regard, we present a formulation that demonstrates that the prepared nanocomposite gel has ideal properties to be used in the medical field as an antibacterial agent.

13.
Frontiers in Materials ; 9, 2022.
Article in English | Web of Science | ID: covidwho-2163030

ABSTRACT

Nanomaterials have played a significant role in effectively combating the global SARS-CoV-2 pandemic that began in December 2019 through the development of vaccines as well as antiviral therapies. These versatile, tunable materials can interact and deliver a broad range of biologically relevant molecules for preventing COVID-19 infection, generating immunity against COVID-19, and treating infected patients. Application of these nanomaterials and nanotechnologies can further be investigated in conjunction with disease models of COVID-19 and this holds immense potential for accelerating vaccine or therapeutic process development further encouraging the elimination of animal model use during preclinical stages. This review examines the existing literature on COVID-19 related nanomaterial applications, including perspective on nanotechnology-based vaccines and therapeutics, and discusses how these tools can be adapted to address new SARS-CoV-2 variants of concern. We also analyze the limitations of current nanomaterial approaches to managing COVID-19 and its variants alongside the challenges posed when implementing this technology. We end by providing avenues for future developments specific to disease modelling in this ever-evolving field.

14.
Materials Advances ; 2023.
Article in English | Web of Science | ID: covidwho-2151150

ABSTRACT

During the COVID'19 outbreak, biosensing devices won increasing relevance, demonstrating their potential in the medical diagnostic field. Hence, the present review reports on the main advances in 2D-ZnO nanostructure-based biosensors. So far, bulk ZnO has shown potential for biosensing, optical, and power electronic applications, mainly based on its wide band gap. In the post graphene era, its 2-D allotropes like ZnO sheets and ZnO nanoribbons have outperformed the bulk ZnO structures for specific applications. ZnO demonstrates various stable and feasible morphologies: nanotubes, nanowires, nanorods, nanosheets, nanoparticles, and nanobelts. As a matrix layer in biosensing applications, ZnO strongly binds to biomolecules due to its high isoelectric point (IEP) and shows a strong sensitivity due to the high surface-to-volume ratio. Further, ZnO nanostructures used as a matrix layer play an important role in inhibiting specific biological interactions and hence improve the sensitivity of sensing devices. Further, bioselective layers are typically immobilized onto ZnO either by direct adsorption or by covalent binding. ZnO based biosensors are categorized into optical, piezoelectric, and electrochemical biosensors, among others, based on their biosensing mechanism. In particular, electrochemical sensors produce signals via an electrical pathway for detecting and monitoring the target molecules. Optical sensors produce signals based on luminescence or reflectance, among others. Piezoelectric biosensors produce signals by mass loading of the piezoelectric material. ZnO-based FET biosensors are also reported, showing sensing application by the change in the channel's conductance. Further, recent literature on the detection of COVID-19 using ZnO nanostructures is presented.

15.
Nanomaterials (Basel) ; 12(23)2022 Dec 06.
Article in English | MEDLINE | ID: covidwho-2155213

ABSTRACT

The COVID-19 pandemic has increased the need for developing disinfectant surfaces as well as reducing the spread of infections on contaminated surfaces and the contamination risk from the fomite route. The present work reports on the antiviral activity of coatings containing ZnO particles obtained by two simple synthesis routes using Aloe vera (ZnO-aloe) or cassava starch (ZnO-starch) as reaction fuel. After detailed characterization using XRD and NEXAFS, the obtained ZnO particles were dispersed in a proportion of 10% with two different waterborne acrylic coatings (binder and commercial white paint) and brushed on the surface of polycarbonates (PC). The cured ZnO/coatings were characterized by scanning electron microscopes (SEM) and energy-dispersive X-ray spectroscopy (EDS). Wettability tests were performed. The virucidal activity of the ZnO particles dispersed in the waterborne acrylic coating was compared to a reference control sample (PC plates). According to RT-PCR results, the ZnO-aloe/coating displays the highest outcome for antiviral activity against SARS-CoV-2 using the acrylic binder, inactivating >99% of the virus after 24 h of contact relative to reference control.

16.
Pharmaceutics ; 14(12)2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2123790

ABSTRACT

Due to the high prevalence of infectious diseases and their concurrent outbreaks, there is a high interest in developing novel materials with antimicrobial properties. Antibacterial and antiviral properties of a range of metal-based nanoparticles (NPs) are a promising means to fight airborne diseases caused by viruses and bacteria. The aim of this study was to test antimicrobial metals and metal-based nanoparticles efficacy against three viruses, namely influenza A virus (H1N1; A/WSN/1933) and coronaviruses TGEV and SARS-CoV-2; and two bacteria, Escherichia coli and Staphylococcus aureus. The efficacy of ZnO, CuO, and Ag NPs and their respective metal salts, i.e., ZnSO4, CuSO4, and AgNO3, was evaluated in suspensions, and the compounds with the highest antiviral efficacy were chosen for incorporation into fibers of cellulose acetate (CA), using electrospinning to produce filter materials for face masks. Among the tested compounds, CuSO4 demonstrated the highest efficacy against influenza A virus and SARS-CoV-2 (1 h IC50 1.395 mg/L and 0.45 mg/L, respectively), followed by Zn salt and Ag salt. Therefore, Cu compounds were selected for incorporation into CA fibers to produce antiviral and antibacterial filter materials for face masks. CA fibers comprising CuSO4 decreased SARS-CoV-2 titer by 0.38 logarithms and influenza A virus titer by 1.08 logarithms after 5 min of contact; after 1 h of contact, SARS-COV-2 virus was completely inactivated. Developed CuO- and CuSO4-based filter materials also efficiently inactivated the bacteria Escherichia coli and Staphylococcus aureus. The metal NPs and respective metal salts were potent antibacterial and antiviral compounds that were successfully incorporated into the filter materials of face masks. New antibacterial and antiviral materials developed and characterized in this study are crucial in the context of the ongoing SARS-CoV-2 pandemic and beyond.

17.
Antibiotics (Basel) ; 11(11)2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2109906

ABSTRACT

Hand hygiene is the key factor to control and prevent the spread of infections, for example, hospital-acquired infections (HAIs). People commonly use alcohol-based hand sanitizers to assure hand hygiene. However, frequent use of alcohol-based hand sanitizers in a pandemic situation (e.g., COVID-19) was associated with serious drawbacks such as skin toxicity including irritation, skin dermatitis, and skin dryness or cracking, along with peeling, redness, or itching with higher possibility of infection. This demands the development of alternative novel products that are effective as alcohol-based hand sanitizers but have no hazardous effects. Zinc oxide nanoparticles (ZnO-NPs) are known to have broad-spectrum antimicrobial activity, be compatible with the biological system and the environment, and have applicable and economic industrial-scale production. Thus, ZnO-NPs might be a good candidate for hand sanitation. To the best of our knowledge, the antibacterial activity of ZnO-NPs in comparison to alcohol-based hand sanitizers has not yet been studied. In the present work, a comparative study of the antibacterial activity of ZnO-NPs vs. Sterillium, a commercial alcohol-based hand sanitizer that is commonly used in Egyptian hospitals, was performed against common microorganisms known to cause HAIs in Egypt, including Acinetobacter baumannii, Klebsiella pneumoniae, Methicillin-resistant Staphylococcus aureus (MRSA), and Staphylococcus aureus. The safety profiles of ZnO-NPs and Sterillium were also assessed. The obtained results demonstrated the superior antibacterial activity and safety of ZnO-NPs compared to Sterillium. Therefore, ZnO-NPs could be a promising candidate for hand sanitation in comparison to alcohol-based hand sanitizers; however, several studies related to long-term toxicity and stability of ZnO-NPs and investigations into their antimicrobial activity and safety in healthcare settings are still required in the future to ascertain their antimicrobial activity and safety.

18.
Int J Mol Sci ; 23(20)2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2081983

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that has caused a 'coronavirus disease 2019' (COVID-19) pandemic in multiple waves, which threatens human health and public safety. During this pandemic, some patients with COVID-19 acquired secondary infections, such as mucormycosis, also known as black fungus disease. Mucormycosis is a serious, acute, and deadly fungal infection caused by Mucorales-related fungal species, and it spreads rapidly. Hence, prompt diagnosis and treatment are necessary to avoid high mortality and morbidity rates. Major risk factors for this disease include uncontrolled diabetes mellitus and immunosuppression that can also facilitate increases in mucormycosis infections. The extensive use of steroids to prevent the worsening of COVID-19 can lead to black fungus infection. Generally, antifungal agents dedicated to medical applications must be biocompatible, non-toxic, easily soluble, efficient, and hypoallergenic. They should also provide long-term protection against fungal growth. COVID-19-related black fungus infection causes a severe increase in fatalities. Therefore, there is a strong need for the development of novel and efficient antimicrobial agents. Recently, nanoparticle-containing products available in the market have been used as antimicrobial agents to prevent bacterial growth, but little is known about their efficacy with respect to preventing fungal growth, especially black fungus. The present review focuses on the effect of various types of metal nanoparticles, specifically those containing silver, zinc oxide, gold, copper, titanium, magnetic, iron, and carbon, on the growth of various types of fungi. We particularly focused on how these nanoparticles can impact the growth of black fungus. We also discussed black fungus co-infection in the context of the global COVID-19 outbreak, and management and guidelines to help control COVID-19-associated black fungus infection. Finally, this review aimed to elucidate the relationship between COVID-19 and mucormycosis.


Subject(s)
COVID-19 Drug Treatment , Mucorales , Mucormycosis , Nanoparticles , Zinc Oxide , Humans , SARS-CoV-2 , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mucormycosis/drug therapy , Mucormycosis/epidemiology , Mucormycosis/microbiology , Silver/pharmacology , Zinc Oxide/pharmacology , Copper/pharmacology , Titanium/pharmacology , Iron/pharmacology , Gold/pharmacology , Carbon/pharmacology
19.
Journal of Water Process Engineering ; 49:103149, 2022.
Article in English | ScienceDirect | ID: covidwho-2041999

ABSTRACT

During the covid-19 pandemic large demand in gloves resulted in high consumption of zinc-oxide (ZnO) as an activator during the vulcanization process for glove production leading to the generation of zinc-containing wastewater requiring wastewater treatment to reduce zinc concentration below 2 mg/L. Zinc can be removed through adsorption, and this opens up an opportunity to recycle the removed zinc ions for ZnO synthesis. Therefore, the objective of this study is to evaluate the feasibility for ZnO synthesis via the adsorption-desorption-chemical precipitation pathway. Adsorption was conducted using palm shell activated carbon (PSAC), a low-cost adsorbent, and it exhibited a large surface area from BET analysis of 717 m2/g and showed excellent zinc adsorption possessing a Langmuir monolayer adsorption capacity of 3.6 mg/g. A Langmuir equilibrium (RL) of, 0 < RL < 1, was calculated for zinc adsorption showing favorable adsorption. PSAC exhibited endothermic adsorption attributed to the positive change in enthalpy of +ΔH = 63.356 kJ/mol. An initial adsorption characteristic of, Ri = 0.87 implies PSAC possesses fast initial adsorption properties, where most of the zinc removal happens within the first 30 min. HCl is an excellent desorption agent for zinc desorption achieving high average zinc desorption efficiency of 91.5 %. Chemical precipitation showed an average zinc conversion rate of 98 %. The resulting ZnO was characterized and it exhibited a high surface area of 97.4 m2/g after calcination (400 °C, 3 h), high purity and high crystallinity. The results confirmed the feasibility of zinc ion recovery for recycling to produce good quality ZnO.

20.
Asian Anthropology (1683478X) ; 21(3):211-223, 2022.
Article in English | Academic Search Complete | ID: covidwho-2037118

ABSTRACT

This article explores how white Western male vloggers have sought to maintain their positive images among Chinese netizens on the Chinese video-sharing platform Bilibili during the Covid-19 pandemic, when the West and foreign migrants in China were lampooned and scorned due to rising Chinese nationalism. By analyzing these vloggers' self-representations and the Chinese audience's responses to them, the article discusses how white male identity is negotiated on China's state-regulated social media platforms in this critical time. It shows that while Western male vloggers carefully represent themselves as ideal foreign migrants in China, they are subject to criticisms from their Chinese audience. In this process, the meanings attached to white male identity have become increasingly debated. [ FROM AUTHOR] Copyright of Asian Anthropology (1683478X) is the property of Routledge and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

SELECTION OF CITATIONS
SEARCH DETAIL